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Threat of Quantum Computers and 
Candidate Post-Quantum PKE

P. Shor’s factoring and discrete logarithm quantum
algorithms break widely-used public key encryption (PKE),
e.g., RSA, (EC)DH, Pairing crypto.
Candidates of post-quantum PKE

lattice crypto
multivariate crypto 
code-based crypto 
isogeny crypto

Quantum-resistant basic mathematical problems

lattice crypto： shortest vector problem （SVP）,
closest vector problem （CVP）

isogeny crypto： (ＳＩＤＨ) isogeny problem,
(CSIDH) group action inversion problem 
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Elliptic Curves in Cryptography

(x3, y3) := (x1, y1) + (x2, y2) x3 := b{(y2-y1)/(x2-x1)}2-x1- x2-a
y3 := {(y2-y1)/(x2-x1)}(x1-x3)-y1

P =(x1, y1)

Q = (x2, y2)

R = (x3, y3)

An elliptic curve 𝐸𝐸 over a finite field 𝔽𝔽𝑞𝑞 (𝑞𝑞 = 𝑝𝑝𝑘𝑘, 𝑝𝑝 ≥ 5)

R := P + Q,

α・P := P + … + P
α

gα in the Diffie-Hellman key exchange

ECDH :  based on the hardness of calculating α from ( P , α・P ): 
EC discrete logarithm

is defined by an equation 𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) s.t. deg 𝑓𝑓 = 3.

𝐸𝐸: 𝑏𝑏𝑦𝑦2 = 𝑥𝑥3 + 𝑎𝑎𝑥𝑥2 + 𝑥𝑥,     𝑎𝑎, 𝑏𝑏(≠ 0) ∈ 𝔽𝔽𝑞𝑞

E.g., Montgomery form 



6
© Mitsubishi Electric Corporation

6

Isogenies between Elliptic Curves
• Given two elliptic curves 𝐸𝐸,𝐸𝐸𝐸, an isogeny 𝜙𝜙:𝐸𝐸 → 𝐸𝐸𝐸 is a surjective 

map defined on points 𝑃𝑃 = (𝑥𝑥,𝑦𝑦) of 𝐸𝐸 by
𝜙𝜙 𝑃𝑃 = (𝑓𝑓 𝑥𝑥,𝑦𝑦 ,𝑔𝑔 𝑥𝑥, 𝑦𝑦 ) where 𝑓𝑓,𝑔𝑔 are rational functions. 

Additionally, if 𝑃𝑃,𝑄𝑄 are points on 𝐸𝐸, then
𝜙𝜙 𝑃𝑃 + 𝑄𝑄 = 𝜙𝜙 𝑃𝑃 + 𝜙𝜙 𝑄𝑄 i.e., 𝜙𝜙 is a homomorphism.

• If there is an isogeny between two elliptic curves 𝐸𝐸,𝐸𝐸𝐸, they are 
called isogenous.

• Vélu's formula: Using elliptic curve 𝐸𝐸 and point 𝑅𝑅, efficiently compute 
an isogeny  𝜙𝜙:𝐸𝐸 → 𝐸𝐸/〈𝑅𝑅〉 with kernel 〈𝑅𝑅〉.

𝜙𝜙

𝑃𝑃𝑄𝑄

𝑃𝑃 + 𝑄𝑄
𝜙𝜙(𝑃𝑃)

𝜙𝜙(𝑄𝑄)

𝜙𝜙 𝑃𝑃 + 𝑄𝑄 = 𝜙𝜙 𝑃𝑃 + 𝜙𝜙(𝑄𝑄)
Isogeny
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subexponental in log p： 𝐿𝐿𝑝𝑝 𝛼𝛼, 𝑐𝑐 ≔ exp 𝑐𝑐 + 𝑜𝑜(1) log 𝑝𝑝 𝛼𝛼 log log 𝑝𝑝 1−𝛼𝛼

Algorithms for Isogeny Problems

Computation time with 
classical computers

Computation time with quantum 
computers

ordinary elliptic curves �𝑂𝑂 4 𝑝𝑝 𝐿𝐿𝑝𝑝 1/2, 3/2

supersingular elliptic 
curve *

�𝑂𝑂 𝑝𝑝 �𝑂𝑂 4 𝑝𝑝

* elliptic curves 𝐸𝐸 with 𝐸𝐸 𝑝𝑝 = {𝑂𝑂𝐸𝐸}

Given two isogenous elliptic curves 𝐸𝐸 and 𝐸𝐸𝐸, compute 
a (compact representation of) isogeny 𝜙𝜙:𝐸𝐸 → 𝐸𝐸′.

Isogeny Problem

For example, a compact representation of 𝜙𝜙 is given by elliptic curves
(𝑗𝑗-invariants) appearing in the sequence of ℓ𝑖𝑖-isogenies if 𝜙𝜙 is 
decomposed into a product of ℓ𝑖𝑖-isogenies for small prime ℓ𝑖𝑖 ’s.
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Hard Homogenous Spaces (HHS) [Cou97,06]

A HHS (𝐺𝐺,𝑋𝑋) consists of 
 a finite commutative group 𝐺𝐺 and 
 some set 𝑋𝑋 (not necessarily a group), where
 𝐺𝐺 acts freely and transitively on 𝑋𝑋, i.e., 𝐺𝐺 ↷ 𝑋𝑋

The following tasks are required to be easy 
(e.g., polynomial-time) 
 compute the group operations on 𝐺𝐺, 
 sample randomly from 𝐺𝐺 with (close to) uniform 

distribution,
 decide validity and equality of a representation of 

elements of 𝑋𝑋,
 compute the action of a group element 𝑔𝑔 ∈ 𝐺𝐺 on 

some 𝑥𝑥 ∈ 𝑋𝑋.
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HHS-Based DH Protocol 

Fundamental intractability assumptions on HHS (𝐺𝐺,𝑋𝑋)
 Inversion intractability of the group action:

Intractable to compute 𝑔𝑔 from (𝑥𝑥,𝑔𝑔 ∗ 𝑥𝑥)
 2-way computational DH ( 2-CDH ) assumption:

Intractable to compute 𝑔𝑔ℎ ∗ 𝑥𝑥 from (𝑥𝑥,𝑔𝑔 ∗ 𝑥𝑥,ℎ ∗ 𝑥𝑥)
 variants of 2-CDH:   2-DDH, 2-GDH assumptions    

Standard HHS-based DH protocol: 

𝒶𝒶←
U
𝐺𝐺, 𝒷𝒷←

U
𝐺𝐺,

compute 𝒶𝒶 ∗ 𝑥𝑥,

Alice Bob

Alice’s secret key, Bob’s secret key,

𝒶𝒶 ∗ 𝑥𝑥 𝒷𝒷 ∗ 𝑥𝑥

𝐾𝐾Alice ≔ 𝒶𝒶 ∗ 𝒷𝒷 ∗ 𝑥𝑥 𝐾𝐾Bob ≔ 𝒷𝒷 ∗ (𝒶𝒶 ∗ 𝑥𝑥)

𝑥𝑥←
U
𝑋𝑋,  public parameter

compute 𝒷𝒷 ∗ 𝑥𝑥,
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Examples of HHS
CRS (Couveignes-Rostovtsev-Stolbunov) HHS (𝐺𝐺,𝑋𝑋)
 𝑋𝑋 ≔ Ell𝑞𝑞 𝒪𝒪 : the set of isomorphism 

classes over 𝔽𝔽𝑞𝑞 of ordinary elliptic curves 
with CM by 𝒪𝒪 (an imaginary quadratic order)
 𝐺𝐺 ≔ Cl 𝒪𝒪 : the ideal class group of 𝒪𝒪

CSIDH (by [CLMPR18]) HHS (𝐺𝐺,𝑋𝑋)
 𝑋𝑋: the set of isomorphism classes over 𝔽𝔽𝑝𝑝

of supersingular elliptic curves with 
𝔽𝔽𝑝𝑝-rational endomorphism ring by 𝒪𝒪
(an imaginary quadratic order)

 𝐺𝐺 ≔ Cl 𝒪𝒪 : the ideal class group of 𝒪𝒪
 Same as the CRS-based key exchange, CSIDH has a 

subexponential-time quantum algorithm attack. 

 Efficient public key validation
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Useful Applications from Isogenies ?
Very recently, Boneh et al. suggest another research direction for using 
isogenies on elliptic curves in applied cryptography which includes:

• 𝑛𝑛-way non-interactive key exchange, 
• verifiable random functions,
• constrained pseudorandom functions, 
• broadcast encryption,
• witness encryption. 

They developed a framework of Cryptographic Invariant Maps (CIMs),
which is 

 a new primitive closely related to a cryptographic multilinear
map, but 

 whose range does not necessarily have a group structure.  

𝑒𝑒𝑛𝑛: 𝑋𝑋 × ⋯ × 𝑋𝑋 → 𝑆𝑆 with
• group action 𝐺𝐺 ↷ 𝑋𝑋
• multilinearity w.r.t. the action
• 𝑆𝑆 is not necessarily a group 
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Cryptographic Invariant Map (CIM) [BGK+18]
On the top of HHS given by (𝐺𝐺,𝑋𝑋), we build the notion of Cryptographic 
Invariant Map (CIM).

By a CIM we mean a randomized algorithm MapGen that inputs a 
security parameter 𝜆𝜆, outputs public parameters 𝑝𝑝𝑝𝑝 ≔ (𝑋𝑋, 𝑆𝑆,𝐺𝐺, 𝑒𝑒), 
and runs in time polynomial in 𝜆𝜆, where

 (𝐺𝐺,𝑋𝑋) is a HHS, and 𝑆𝑆 is a set,

 𝑒𝑒 is a deterministic algorithm that runs in time polynomial in 𝜆𝜆
and 𝑛𝑛, s.t. for 𝑛𝑛 > 0, it computes 𝑒𝑒𝑛𝑛:𝑋𝑋𝑛𝑛 → 𝑆𝑆 that satisfies:

• Invariance property of 𝑒𝑒𝑛𝑛: for all 𝑥𝑥 ∈ 𝑋𝑋 and 𝑔𝑔1, … ,𝑔𝑔𝑛𝑛 ∈ 𝐺𝐺, 
𝑒𝑒𝑛𝑛 𝑔𝑔1 ∗ 𝑥𝑥, … ,𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥 = 𝑒𝑒𝑛𝑛 𝑔𝑔1 ⋯𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥 ;

• Non-degeneracy of 𝑒𝑒𝑛𝑛: for all 𝑖𝑖 with 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 and 
𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋, the map 𝑋𝑋 → 𝑆𝑆 defined by
𝑦𝑦 ↦ 𝑒𝑒𝑛𝑛 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑦𝑦, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛 is injective. 
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Cryptographic Invariant Map (II)
Fundamental Requirements for Cryptographic Invariant Maps (CIMs):
The following isomorphism between abelian varieties holds

However, we have not yet suitable isomorphism invariants, s.t.
if  𝐸𝐸1 × ⋯× 𝐸𝐸𝑛𝑛 ≅ 𝐸𝐸1′ × ⋯× 𝐸𝐸𝑛𝑛′ ⇒ 𝑒𝑒𝑛𝑛 𝐸𝐸1 × ⋯× 𝐸𝐸𝑛𝑛 = 𝑒𝑒𝑛𝑛 𝐸𝐸1′ × ⋯× 𝐸𝐸𝑛𝑛′ ,
if  𝐸𝐸1 × ⋯× 𝐸𝐸𝑛𝑛 ≇ 𝐸𝐸1′ × ⋯× 𝐸𝐸𝑛𝑛′ ⇒ 𝑒𝑒𝑛𝑛 𝐸𝐸1 × ⋯× 𝐸𝐸𝑛𝑛 ≠ 𝑒𝑒𝑛𝑛 𝐸𝐸1′ × ⋯× 𝐸𝐸𝑛𝑛′ .

𝒶𝒶1 ∗ 𝐸𝐸 × ⋯× 𝒶𝒶𝑛𝑛 ∗ 𝐸𝐸 ≅ 𝒶𝒶1 ⋯𝒶𝒶𝑛𝑛 ∗ 𝐸𝐸 × 𝐸𝐸𝑛𝑛−1

Candidates for Cryptographic Invariant Maps (CIMs) [BGK+18]:
Seeking for a higher dimensional analog of elliptic curve 𝑗𝑗-invariant

 theta null invariant 

 Igusa invariants 
 Invariants of Kummer surfaces  
 Deligne invariant                     →

not satisfy the fundamental 
requirements

not compute efficiently
( if it’s efficiently computable, the

isogeny problem become easy !! )
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𝑛𝑛-way DH Assumptions [BGK+18]

We say that MapGen satisfies the 𝑛𝑛-way computational Diffie-Hellman 
assumption (𝑛𝑛-CDH) if for every polynomial time quantum algorithm 𝒮𝒮,

Adv𝒮𝒮
𝑛𝑛CDH 𝜆𝜆 ≔ Pr 𝒮𝒮 𝑝𝑝𝑝𝑝,𝑔𝑔1 ∗ 𝑥𝑥, … ,𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥 = 𝑒𝑒𝑛𝑛−1 𝑔𝑔1 ⋯𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥

is a negligible function of 𝜆𝜆, when 𝑝𝑝𝑝𝑝 ← MapGen(𝜆𝜆), 𝑔𝑔1,⋯ ,𝑔𝑔𝑛𝑛 ← 𝐺𝐺 and
𝑥𝑥 ← 𝑋𝑋.

Two distributions 𝒟𝒟0 and 𝒟𝒟1, where 𝑝𝑝𝑝𝑝 ← MapGen(𝜆𝜆), 𝑔𝑔1,⋯ ,𝑔𝑔𝑛𝑛 ← 𝐺𝐺 and 
𝑥𝑥 ← 𝑋𝑋:

 𝒟𝒟0 is (𝑝𝑝𝑝𝑝,𝑔𝑔1 ∗ 𝑥𝑥, … ,𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥, 𝑠𝑠0) where 𝑠𝑠0 = 𝑒𝑒𝑛𝑛−1 𝑔𝑔1 ⋯𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥 ,
 𝒟𝒟1 is (𝑝𝑝𝑝𝑝,𝑔𝑔1 ∗ 𝑥𝑥, … ,𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥, 𝑠𝑠1) where 𝑠𝑠1 is random in Im 𝑒𝑒𝑛𝑛−1 ⊆ 𝑆𝑆.

We say that MapGen satisfies the 𝑛𝑛-way decisional Diffie-Hellman 
assumption (𝑛𝑛-DDH) if for every polynomial time quantum algorithm 𝒮𝒮,

Adv𝒮𝒮
𝑛𝑛DDH 𝜆𝜆 ≔ Pr 𝒮𝒮 𝑧𝑧 = 1 | 𝑧𝑧 ← 𝒟𝒟0 − Pr 𝒮𝒮 𝑧𝑧 = 1 | 𝑧𝑧 ← 𝒟𝒟1

is a negligible function of 𝜆𝜆.
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𝑛𝑛-way Gap DH Assumption
We say that MapGen satisfies the 𝑛𝑛-way gap Diffie-Hellman 
assumption (𝑛𝑛-GDH) if for every polynomial time quantum algorithm 𝒮𝒮
which accesses the 𝑛𝑛-DDH oracle 𝑂𝑂 ⋅ = 𝑛𝑛-DDH ⋅ ,

Adv𝒮𝒮
𝑛𝑛GDH 𝜆𝜆 ≔ Pr 𝒮𝒮𝑂𝑂 𝑝𝑝𝑝𝑝,𝑔𝑔1 ∗ 𝑥𝑥, … ,𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥 = 𝑒𝑒𝑛𝑛−1 𝑔𝑔1 ⋯𝑔𝑔𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥

is a negligible function of 𝜆𝜆, when 𝑝𝑝𝑝𝑝 ← MapGen(𝜆𝜆), 𝑔𝑔1,⋯ ,𝑔𝑔𝑛𝑛 ← 𝐺𝐺 and
𝑥𝑥 ← 𝑋𝑋. For any input (𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ , 𝑠𝑠′) where 𝑥𝑥𝑖𝑖′ = 𝑔𝑔𝑖𝑖′ ∗ 𝑥𝑥 (𝑖𝑖 = 1, … ,𝑛𝑛), the 
𝑛𝑛-DDH oracle 𝑂𝑂 ⋅ = 𝑛𝑛-DDH ⋅ acts as follows:

 𝑛𝑛-DDH 𝑝𝑝𝑝𝑝, 𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ , , 𝑠𝑠′ = 0 if 𝑠𝑠′ = 𝑒𝑒𝑛𝑛−1 𝑔𝑔1′ ⋯𝑔𝑔𝑛𝑛′ ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥 ,
 𝑛𝑛-DDH 𝑝𝑝𝑝𝑝, 𝑥𝑥1′ , … , 𝑥𝑥𝑛𝑛′ , , 𝑠𝑠′ = 1 otherwise.

Galbraith and Vercauteren showed an attack against the 2-way gap Diffie-
Hellman problem on SIDH since the degrees of isogenies used are fixed 
by public param. as ℓ1

𝑒𝑒1 and ℓ2
𝑒𝑒2 for small primes ℓ1, ℓ2, e.g., ℓ1 = 2, ℓ2 = 3.

As the CSIDH protocol uses random degrees consisting multiple primes
ℓ1, … , ℓ𝑛𝑛 and they are not fixed by public parameters, the attack against 
GDH problem cannot be applied to the CSIDH setting.
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One-Round Authenticated Group Key Exchange 
(AGKE) 

on Cryptographic Invariant Maps (CIM)
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Authenticated KE ( AKE )

Session key

Static 
key

Ephemeral
key

Static
key

Ephemeral 
key

=

In an AKE protocol, two parties, called initiator and responder, have own 
static public keys, exchange ephemeral public keys, and compute a 
session key based on the public keys and the related secret keys.

Among several security models, the Canetti-Krawczyk (CK) model was 
proposed to capture leakage of the session state. 

CK+ model: based on the CK 
model, several additional security 
requirements; key compromise 
impersonation (KCI), weak perfect 
forward secrecy (wPFS) and 
maximal exposure attacks (MEX)
are integrated.

We have no QROM secure nor
CK+ secure one-round HHS-based
AKE protocols.
Cf. [DKS18] for CRS-based one
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Authenticated Group KE ( AGKE )
It is natural to extend two-party authenticated key exchange to 𝑛𝑛-party 
authenticated key exchange for 𝑛𝑛 > 2.
Several security models for AGKE:
 The G-CK model is an AGKE variant of the CK model, and it captures 

leakage of the session state.
 The G-CK+ model integrates the G-CK model with KCI, wPFS and 

MEX requirements. 

Previously, tripartite AGKE protocols secure in the G-CK or G-CK+ model 
were given by Manulis et al. and Suzuki et al. 

Li and Yang introduced one-round AGKE protocol from multilinear maps,
and Lan et al. introduced one-round AGKE protocol from iO. 
These protocols are not proved in the G-CK or G-CK+ model, and 
quantum-resistance is not considered. 

Thus, we have no one-round AGKE protocols for general 𝑛𝑛 parties (𝑛𝑛 > 3) 
secure in the G-CK or G-CK+ model, additionally against quantum
adversaries.
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Our Contributions from CIM and HHS

We propose two one-round AGKE protocols on CIMs.
 𝑛𝑛-UM (𝑛𝑛-Unified Model) protocol which satisfies the G-CK 

security: The security is proved under the 𝑛𝑛-way DDH 
assumption in the quantum random oracle model (QROM).

 BC 𝑛𝑛-DH (biclique 𝑛𝑛-Diffie-Hellman) protocol which 
satisfies the G-CK+ security: The security is proved under 
the 𝑛𝑛-way GDH assumption in the random oracle model.

We Instantiate the proposed protocols on HHS with 
limitation where the number of the user group is two.
 The CSIDH-based protocols are currently more realistic

than the general 𝑛𝑛-party CIM-based ones due to its       
implementability. 
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𝑛𝑛-UM Protocol
𝑇𝑇1 = 𝑡𝑡1 ∗ 𝑥𝑥 ⋯ 𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖 ∗ 𝑥𝑥 ⋯ 𝑇𝑇𝑛𝑛 = 𝑡𝑡𝑛𝑛 ∗ 𝑥𝑥
𝑅𝑅1 = 𝑟𝑟1 ∗ 𝑥𝑥 ⋯ 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖 ∗ 𝑥𝑥 ⋯ 𝑅𝑅𝑛𝑛 = 𝑟𝑟𝑛𝑛 ∗ 𝑥𝑥𝑅𝑅1 ⋯ ←

𝑅𝑅𝑖𝑖 →
𝑅𝑅𝑖𝑖 ⋯

𝑅𝑅𝑛𝑛

𝑍𝑍1 = 𝑒𝑒𝑛𝑛−1 𝑇𝑇1, … ,𝑇𝑇𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖+1,𝑇𝑇𝑖𝑖+2, … ,𝑇𝑇𝑛𝑛
𝑍𝑍2 = 𝑒𝑒𝑛𝑛−1 𝑅𝑅1, … ,𝑅𝑅𝑖𝑖−1, 𝑟𝑟𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+2, … ,𝑅𝑅𝑛𝑛
𝑆𝑆𝐾𝐾 = 𝐻𝐻 Π,𝑈𝑈1, … ,𝑈𝑈𝑛𝑛 ,𝑅𝑅1, … ,𝑅𝑅𝑛𝑛,𝑍𝑍1,𝑍𝑍2

Public parameters:
Protocol identifier Π ≔ nUM. 
A random (𝑛𝑛 − 1)-way cryptographic 
invariant map 𝑋𝑋, 𝑆𝑆,𝐺𝐺, 𝑒𝑒𝑛𝑛−1 ←𝑅𝑅 MapGen(1𝜆𝜆), and random 𝑥𝑥 ←𝑅𝑅 𝑋𝑋.
𝐻𝐻: 0,1 ∗ → 0,1 𝜆𝜆 : hash function. Public parameters = Π,𝑋𝑋, 𝑆𝑆,𝐺𝐺, 𝑒𝑒𝑛𝑛−1, 𝑥𝑥,𝐻𝐻 .

Static secret and public keys: Party 𝑈𝑈𝑖𝑖 chooses 𝑡𝑡𝑖𝑖 ←𝑅𝑅 𝐺𝐺 as the SSK. 
Then, 𝑈𝑈𝑖𝑖 computes 𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖 ∗ 𝑥𝑥 as the SPK.

Key exchange: We suppose a session executed by 𝐔𝐔 = (𝑈𝑈1, … ,𝑈𝑈𝑛𝑛). 
 𝑈𝑈𝑖𝑖 chooses 𝑟𝑟𝑖𝑖 ←𝑅𝑅 𝐺𝐺 as the ESK, and computes 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖 ∗ 𝑥𝑥 as the EPK.

Then, 𝑈𝑈𝑖𝑖 broadcasts Π, role𝑖𝑖′ ,𝑈𝑈𝑖𝑖 ,𝑅𝑅𝑖𝑖 to 𝐔𝐔 ∖ {𝑈𝑈𝑖𝑖}.
 On receiving Π, role𝑗𝑗′ ,𝑈𝑈𝑗𝑗 ,𝑅𝑅𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖, 𝑈𝑈𝑖𝑖 computes

𝑍𝑍1 = 𝑒𝑒𝑛𝑛−1 𝑇𝑇1, … ,𝑇𝑇𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖+1,𝑇𝑇𝑖𝑖+2, … ,𝑇𝑇𝑛𝑛 and
𝑍𝑍2 = 𝑒𝑒𝑛𝑛−1 𝑅𝑅1, … ,𝑅𝑅𝑖𝑖−1, 𝑟𝑟𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+2, … ,𝑅𝑅𝑛𝑛 .
𝑈𝑈𝑖𝑖 generates the session key 𝑆𝑆𝐾𝐾 = 𝐻𝐻 Π,𝑈𝑈1, … ,𝑈𝑈𝑛𝑛 ,𝑅𝑅1, … ,𝑅𝑅𝑛𝑛,𝑍𝑍1,𝑍𝑍2 .

𝑍𝑍1 = 𝑒𝑒𝑛𝑛−1 𝑇𝑇1, … ,𝑇𝑇𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖+1,𝑇𝑇𝑖𝑖+2, … , 𝑇𝑇𝑛𝑛 = 𝑒𝑒𝑛𝑛−1 𝑡𝑡1 ⋯ 𝑡𝑡𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥 ,
𝑍𝑍2 = 𝑒𝑒𝑛𝑛−1 𝑅𝑅1, … ,𝑅𝑅𝑖𝑖−1, 𝑟𝑟𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+2, … ,𝑅𝑅𝑛𝑛 = 𝑒𝑒𝑛𝑛−1 𝑟𝑟1 ⋯𝑟𝑟𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥 .
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Security of 𝑛𝑛-UM Protocol

The 𝑛𝑛-UM protocol is a post-quantum G-CK-secure 𝑛𝑛-party 
authenticated key exchange protocol from the 𝑛𝑛-DDH
assumption in the QROM.

In particular, for any quantum adversary 𝒜𝒜 against the 𝑛𝑛-UM protocol 
that runs in time at 𝑛𝑛𝑤𝑤, involves at most 𝑛𝑛𝑢𝑢 honest parties and activates 
at most 𝑛𝑛𝑠𝑠 sessions, and makes at most 𝑛𝑛ℎ queries to the quantum 
random oracle and 𝑛𝑛𝑞𝑞 StaticReveal queries, 

there exists a 𝑛𝑛-DDH quantum solver 𝒮𝒮 such that

where 𝒮𝒮 runs in time 𝑛𝑛𝑤𝑤 plus time to perform 𝑂𝑂( 𝑛𝑛𝑢𝑢 + 𝑛𝑛𝑠𝑠 𝜆𝜆) group 
operations.

Theorem ( 𝑛𝑛-UM )

Adv𝒮𝒮
𝑛𝑛DDH 𝜆𝜆 ≥

2 ⋅ Adv𝑛𝑛UM,𝒜𝒜
gck 𝜆𝜆 2

𝑛𝑛𝑢𝑢2𝑛𝑛𝑠𝑠2 8𝑛𝑛ℎ𝑛𝑛𝑞𝑞 + 3 𝑛𝑛ℎ + 𝑛𝑛𝑞𝑞 + 1 4 ,
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Biclique 𝑛𝑛−DH Protocol (I)
Design Principle:
 G-CK+ security: maximum exposure resilience:

Adv. can obtain either static or ephemeral secret key for each party
who is contained in a session. 

 To resist all exposure patterns, parties should compute shared values 
by all combinations of static or ephemeral key for each party.

 In 𝑛𝑛-UM, party 𝑈𝑈𝑖𝑖 computes 
𝑍𝑍𝐼𝐼 = 𝑒𝑒𝑛𝑛−1 𝑇𝑇1, … ,𝑇𝑇𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖+1,𝑇𝑇𝑖𝑖+2, … ,𝑇𝑇𝑛𝑛 and
𝑍𝑍∅ = 𝑒𝑒𝑛𝑛−1 𝑅𝑅1, … ,𝑅𝑅𝑖𝑖−1, 𝑟𝑟𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+2, … ,𝑅𝑅𝑛𝑛 ,
where 𝑍𝑍𝐼𝐼 (resp. 𝑍𝑍∅) consists of only static (resp. ephemeral) keys. 

 Let 𝐼𝐼 ≔ [1,𝑛𝑛]. In biclique 𝑛𝑛-DH, party 𝑈𝑈𝑖𝑖 additionally computes 
𝑍𝑍𝑃𝑃 = 𝑒𝑒𝑛𝑛−1 𝑉𝑉1, … ,𝑉𝑉𝑖𝑖−1, 𝑣𝑣𝑖𝑖 ∗ 𝑉𝑉𝑖𝑖+1,𝑉𝑉𝑖𝑖+2, … ,𝑉𝑉𝑛𝑛 = 𝑒𝑒𝑛𝑛−1 𝑣𝑣1 ⋯𝑣𝑣𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥

for all subsets 𝑃𝑃 of  𝐼𝐼, where
• 𝑣𝑣𝑖𝑖 = 𝑡𝑡𝑖𝑖 if 𝑖𝑖 ∈ 𝑃𝑃 and   𝑣𝑣𝑖𝑖 = 𝑟𝑟𝑖𝑖 if 𝑖𝑖 ∉ 𝑃𝑃, 
• 𝑉𝑉𝑘𝑘 = 𝑇𝑇𝑘𝑘 if 𝑘𝑘 ∈ 𝑃𝑃 and 𝑉𝑉𝑘𝑘 = 𝑅𝑅𝑘𝑘 if 𝑘𝑘 ∉ 𝑃𝑃 for any 𝑘𝑘 ≠ 𝑖𝑖.
𝑈𝑈𝑖𝑖 generates the session key 𝑆𝑆𝐾𝐾 = 𝐻𝐻 Π,𝑈𝑈1, … ,𝑈𝑈𝑛𝑛,𝑅𝑅1, … ,𝑅𝑅𝑛𝑛,𝑍𝑍𝐼𝐼 , … , 𝑍𝑍∅ . 
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Biclique 𝑛𝑛−DH Protocol (II)

for each subset 𝑃𝑃 of  𝐼𝐼 = [𝑛𝑛], 
𝑍𝑍𝑃𝑃 = 𝑒𝑒𝑛𝑛−1 𝑉𝑉1, … ,𝑉𝑉𝑖𝑖−1, 𝑣𝑣𝑖𝑖 ∗ 𝑉𝑉𝑖𝑖+1,𝑉𝑉𝑖𝑖+2, … ,𝑉𝑉𝑛𝑛 = 𝑒𝑒𝑛𝑛−1 𝑣𝑣1 ⋯𝑣𝑣𝑛𝑛 ∗ 𝑥𝑥, 𝑥𝑥, … , 𝑥𝑥
where

• 𝑣𝑣𝑖𝑖 = 𝑡𝑡𝑖𝑖 if 𝑖𝑖 ∈ 𝑃𝑃 and    𝑣𝑣𝑖𝑖 = 𝑟𝑟𝑖𝑖 if 𝑖𝑖 ∉ 𝑃𝑃, 
• 𝑉𝑉𝑘𝑘 = 𝑇𝑇𝑘𝑘 if 𝑘𝑘 ∈ 𝑃𝑃 and    𝑉𝑉𝑘𝑘 = 𝑅𝑅𝑘𝑘 if 𝑘𝑘 ∉ 𝑃𝑃 for any 𝑘𝑘 ≠ 𝑖𝑖.

𝑡𝑡1 𝑡𝑡2

𝑟𝑟2

𝑡𝑡7

𝑟𝑟7

𝑡𝑡8

𝑟𝑟8

 For example, for 𝑛𝑛 = 8, and 𝑃𝑃 = 1,3,4,8

𝑖𝑖 = 1 2 7 8

1

0

1

0

1

0

1

0

𝑣𝑣𝑖𝑖 = 𝑡𝑡𝑖𝑖 or 𝑟𝑟𝑖𝑖

truth value
Tr( 𝑖𝑖 ∈ 𝑃𝑃 )

𝑟𝑟1

static key

ephemeral key
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Biclique 𝑛𝑛−DH Protocol
(III)

𝑇𝑇1 = 𝑡𝑡1 ∗ 𝑥𝑥 ⋯ 𝑇𝑇𝑖𝑖 = 𝑡𝑡𝑖𝑖 ∗ 𝑥𝑥 ⋯ 𝑇𝑇𝑛𝑛 = 𝑡𝑡𝑛𝑛 ∗ 𝑥𝑥
𝑅𝑅1 = 𝑟𝑟1 ∗ 𝑥𝑥 ⋯ 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖 ∗ 𝑥𝑥 ⋯ 𝑅𝑅𝑛𝑛 = 𝑟𝑟𝑛𝑛 ∗ 𝑥𝑥𝑅𝑅1 ⋯ ←

𝑅𝑅𝑖𝑖 →
𝑅𝑅𝑖𝑖 ⋯

𝑅𝑅𝑛𝑛

𝑍𝑍∅ = 𝑒𝑒𝑛𝑛−1 𝑇𝑇1, … ,𝑇𝑇𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖+1,𝑇𝑇𝑖𝑖+2, … ,𝑇𝑇𝑛𝑛

𝑍𝑍𝐼𝐼 = 𝑒𝑒𝑛𝑛−1 𝑅𝑅1, … ,𝑅𝑅𝑖𝑖−1, 𝑟𝑟𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+2, … ,𝑅𝑅𝑛𝑛
𝑆𝑆𝐾𝐾 = 𝐻𝐻 Π,𝑈𝑈1, … ,𝑈𝑈𝑛𝑛 ,𝑅𝑅1, … ,𝑅𝑅𝑛𝑛,𝑍𝑍∅ , … ,𝑍𝑍𝐼𝐼

Public parameters:
We set protocol identifier Π = BCnDH. 
The rest is the same as nUM. Public parameters are Π,𝑋𝑋, 𝑆𝑆,𝐺𝐺, 𝑒𝑒𝑛𝑛−1, 𝑥𝑥,𝐻𝐻 .
Static secret and public keys:

Same as nUM: (𝑡𝑡𝑖𝑖 ,𝑇𝑇𝑖𝑖) are the pair of SSK and SPK of 𝑈𝑈𝑖𝑖.

Key exchange: we suppose a session executed by 𝐔𝐔 = (𝑈𝑈1, … ,𝑈𝑈𝑛𝑛). 
 𝑈𝑈𝑖𝑖 chooses 𝑟𝑟𝑖𝑖 ←𝑅𝑅 𝐺𝐺 as the ESK, and computes 𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑖𝑖 ∗ 𝑥𝑥 as the EPK.

Then, 𝑈𝑈𝑖𝑖 broadcasts Π, role𝑖𝑖′ ,𝑈𝑈𝑖𝑖 ,𝑅𝑅𝑖𝑖 to 𝐔𝐔 ∖ {𝑈𝑈𝑖𝑖}.
 On receiving Π, role𝑗𝑗′ ,𝑈𝑈𝑗𝑗 ,𝑅𝑅𝑗𝑗 for all 𝑗𝑗 ≠ 𝑖𝑖, 𝑈𝑈𝑖𝑖 computes

𝑍𝑍𝐼𝐼 = 𝑒𝑒𝑛𝑛−1 𝑇𝑇1, … ,𝑇𝑇𝑖𝑖−1, 𝑡𝑡𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖+1,𝑇𝑇𝑖𝑖+2, … ,𝑇𝑇𝑛𝑛 , … ,
𝑍𝑍∅ = 𝑒𝑒𝑛𝑛−1 𝑅𝑅1, … ,𝑅𝑅𝑖𝑖−1, 𝑟𝑟𝑖𝑖 ∗ 𝑅𝑅𝑖𝑖+1,𝑅𝑅𝑖𝑖+2, … ,𝑅𝑅𝑛𝑛 as follows: 
for all 𝑃𝑃 ∈ 𝒫𝒫(𝐼𝐼), 𝑍𝑍𝑃𝑃 = 𝑒𝑒𝑛𝑛−1 𝑉𝑉1, … ,𝑉𝑉𝑖𝑖−1, 𝑣𝑣𝑖𝑖 ∗ 𝑉𝑉𝑖𝑖+1,𝑉𝑉𝑖𝑖+2, … ,𝑉𝑉𝑛𝑛 , where
• 𝑣𝑣𝑖𝑖 = 𝑡𝑡𝑖𝑖 if 𝑖𝑖 ∈ 𝑃𝑃 and    𝑣𝑣𝑖𝑖 = 𝑟𝑟𝑖𝑖 if 𝑖𝑖 ∉ 𝑃𝑃, 
• 𝑉𝑉𝑘𝑘 = 𝑇𝑇𝑘𝑘 if 𝑘𝑘 ∈ 𝑃𝑃 and    𝑉𝑉𝑘𝑘 = 𝑅𝑅𝑘𝑘 if 𝑘𝑘 ∉ 𝑃𝑃 for any 𝑘𝑘 ≠ 𝑖𝑖.

Then, 𝑈𝑈𝑖𝑖 generates the session key 
𝑆𝑆𝐾𝐾 = 𝐻𝐻 Π,𝑈𝑈1, … ,𝑈𝑈𝑛𝑛,𝑅𝑅1, … ,𝑅𝑅𝑛𝑛,𝑍𝑍𝐼𝐼 , … ,𝑍𝑍∅ , and completes the session.

⋯
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Security of biclique 𝑛𝑛-DH Protocol

The biclique 𝑛𝑛-DH protocol is a post-quantum G-CK+

secure 𝑛𝑛-party authenticated key exchange protocol from 
the 𝑛𝑛-GDH assumption in the ROM.

In particular, for any quantum adversary 𝒜𝒜 against the biclique 𝑛𝑛-DH 
protocol that runs in time at 𝑛𝑛𝑤𝑤, involves at most 𝑛𝑛𝑢𝑢 honest parties and 
activates at most 𝑛𝑛𝑠𝑠 sessions, and makes at most 𝑛𝑛ℎ queries to the 
random oracle, 
there exists a 𝑛𝑛-GDH quantum solver 𝒮𝒮 such that

where 𝒮𝒮 runs in time 𝑛𝑛𝑤𝑤 plus time to perform 𝑂𝑂( 𝑛𝑛𝑢𝑢 + 𝑛𝑛𝑠𝑠 𝜆𝜆) group 
operations and make 𝑂𝑂(𝑛𝑛ℎ + 𝑛𝑛𝑠𝑠) queries to the 𝑛𝑛-DDH oracle.

Theorem ( biclique 𝑛𝑛-DH )

Adv𝒮𝒮
𝑛𝑛GDH 𝜆𝜆 ≥ min

1
𝑛𝑛𝑢𝑢𝑛𝑛

,
1

𝑛𝑛𝑢𝑢𝑛𝑛−1𝑛𝑛𝑠𝑠
, … ,

1
𝑛𝑛𝑢𝑢𝑛𝑛𝑠𝑠𝑛𝑛−1

,
1
𝑛𝑛𝑠𝑠𝑛𝑛

⋅ AdvBC𝑛𝑛DH,𝒜𝒜
gck+ 𝜆𝜆 ,
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Need for 𝑛𝑛-Gap DH Assumption 
To simulate hash queries and session key reveal queries for 
all non-trivial combinations, the 𝑛𝑛-DDH oracle is necessary to
keep consistency.   
 If hash function 𝐻𝐻 … ,𝑍𝑍𝐼𝐼 , … ,𝑍𝑍∅ is queried, simulator should check

for all subsets 𝑃𝑃 of  𝐼𝐼, whether 𝑍𝑍𝑃𝑃 is the form of
𝑍𝑍𝑃𝑃 = 𝑒𝑒𝑛𝑛−1 𝑉𝑉1, … ,𝑉𝑉𝑖𝑖−1, 𝑣𝑣𝑖𝑖 ∗ 𝑉𝑉𝑖𝑖+1,𝑉𝑉𝑖𝑖+2, … ,𝑉𝑉𝑛𝑛 where
• 𝑣𝑣𝑖𝑖 = 𝑡𝑡𝑖𝑖 if 𝑖𝑖 ∈ 𝑃𝑃 and    𝑣𝑣𝑖𝑖 = 𝑟𝑟𝑖𝑖 if 𝑖𝑖 ∉ 𝑃𝑃, 
• 𝑉𝑉𝑘𝑘 = 𝑇𝑇𝑘𝑘 if 𝑘𝑘 ∈ 𝑃𝑃 and    𝑉𝑉𝑘𝑘 = 𝑅𝑅𝑘𝑘 if 𝑘𝑘 ∉ 𝑃𝑃 for any 𝑘𝑘 ≠ 𝑖𝑖.

by inputting  (𝑉𝑉1, … ,𝑉𝑉𝑖𝑖−1,𝑉𝑉𝑖𝑖 , 𝑉𝑉𝑖𝑖+1,𝑉𝑉𝑖𝑖+2, … ,𝑉𝑉𝑛𝑛) to the 𝑛𝑛-DDH oracle.

adversary

hash query for
… ,𝑍𝑍𝐼𝐼 , … ,𝑍𝑍∅

simulator

well-formedness of
𝑍𝑍𝑃𝑃 for (any) 𝑃𝑃 ? 

𝑛𝑛-DDH 
oracle yes stored / random 

value in RO list 
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CK Secure AKE Protocol from HHS

The 2-UM protocol is a post-quantum CK secure 2-party 
authenticated key exchange protocol under the 2-DDH 
assumption in the quantum random oracle model.

Corollary ( 2-UM )

𝑇𝑇1 = 𝑡𝑡1 ∗ 𝑥𝑥 𝑇𝑇2 = 𝑡𝑡2 ∗ 𝑥𝑥

𝑅𝑅1 = 𝑟𝑟1 ∗ 𝑥𝑥
𝑅𝑅1 𝑅𝑅2 = 𝑟𝑟2 ∗ 𝑥𝑥
𝑅𝑅2

𝑍𝑍1 = 𝑡𝑡1 ∗ 𝑇𝑇2

𝑆𝑆𝐾𝐾 = 𝐻𝐻 Π,𝑈𝑈1,𝑈𝑈2,𝑅𝑅1,𝑅𝑅2,𝑍𝑍1,𝑍𝑍2

𝑍𝑍2 = 𝑟𝑟1 ∗ 𝑅𝑅2

𝑍𝑍1 = 𝑡𝑡2 ∗ 𝑇𝑇1
𝑍𝑍2 = 𝑟𝑟2 ∗ 𝑅𝑅1

We have one-round two-party
AKE protocols from HHS as
special cases of our AGKE.

 2-UM: HHS-based CK
secure AKE protocol
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CK+ Secure AKE Protocol from HHS

 Biclique 2-DH:  HHS-based CK+ secure AKE protocol

The biclique 2-DH protocol is a post-quantum CK+ secure
2-party authenticated key exchange protocol under the 2-
GDH assumption in the random oracle model.

Corollary ( biclique 2-DH )

𝑇𝑇1 = 𝑡𝑡1 ∗ 𝑥𝑥 𝑇𝑇2 = 𝑡𝑡2 ∗ 𝑥𝑥

𝑅𝑅1 = 𝑟𝑟1 ∗ 𝑥𝑥
𝑅𝑅1 𝑅𝑅2 = 𝑟𝑟2 ∗ 𝑥𝑥
𝑅𝑅2

𝑍𝑍3 = 𝑡𝑡1 ∗ 𝑅𝑅2,

𝑆𝑆𝐾𝐾 = 𝐻𝐻 Π,𝑈𝑈1,𝑈𝑈2,𝑅𝑅1,𝑅𝑅2,𝑍𝑍1,𝑍𝑍2,𝑍𝑍3,𝑍𝑍4

𝑍𝑍4 = 𝑟𝑟1 ∗ 𝑅𝑅2 𝑍𝑍3 = 𝑟𝑟2 ∗ 𝑇𝑇1, 𝑍𝑍4 = 𝑟𝑟2 ∗ 𝑅𝑅1

𝑍𝑍1 = 𝑡𝑡1 ∗ 𝑇𝑇2, 𝑍𝑍2 = 𝑟𝑟1 ∗ 𝑇𝑇2 𝑍𝑍1 = 𝑡𝑡2 ∗ 𝑇𝑇1, 𝑍𝑍2 = 𝑡𝑡2 ∗ 𝑅𝑅1
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One-Round Authenticated Key Exchange 
from SIDH
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Previous Works on SIDH-based AKE

SIDH is considered more efficient than CSIDH key exchange.
Therefore, we propose SIDH-based AKE protocols as well.

Very recently, several SIDH AKE protocols have been proposed.
Among them, only Galbraith’s proposal achieves one-round AKE,
however, the security is proved in the CK and random oracle model.

security round
complexity assumption model

SIDH TS2 [Gal18] SI-CDH CK ROM 1-round
AKE-SIDH-SIKE [Lon18] SI-DDH CK+ ROM 2-round

LJA [LJA18] SI-DDH qCK QROM 2-round

AKESIDH-2 [XXW+18] SI-DDH CK+ ROM 2-round
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Our Contributions on SIDH AKE
We propose two efficient one-round AKE from SIDH：

1) SIDH UM AKE : secure in CK model under SI-DDH（SI Decisional-DH）
assumption in QROM.

2) biclique SIDH AKE : secure in CK+ model under di-SI-GDH（degree-
insentitive SI Gap-DH）assumption in ROM.

We introduce a new di-SI-GDH assumption,  a variant of SI-GDH 
assumption, for avoiding the GV (Galbraith-Vercauteren)-type attack for 
SI-GDH problem.

security round
complexityassumption model

SIDH TS2 [Gal18] SI-CDH CK ROM 1-round
AKE-SIDH-SIKE [Lon18] SI-DDH CK+ ROM 2-round

LJA [LJA18] SI-DDH qCK QROM 2-round

AKESIDH-2 [XXW+18] SI-DDH CK+ ROM 2-round
SIDH UM [FTTY18] SI-DDH CK QROM 1-round

biclique SIDH [FTTY18] di-SI-GDH CK+ ROM 1-round
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SIDH Key Exchange

Alice Bob

public parameters： prime p ( s.t. 𝑝𝑝 ± 1 = 𝑓𝑓 ⋅ ℓ𝐴𝐴
𝑒𝑒𝐴𝐴ℓ𝐵𝐵

𝑒𝑒𝐵𝐵 ),  e.g.,  ℓ𝐴𝐴 = 2, ℓ𝐵𝐵 = 3

supersingular EC 

generators

𝐸𝐸 𝔽𝔽𝑝𝑝2 ≃ ℤ/ 𝑝𝑝 ± 1 ℤ 2 ⊇ ℤ/ℓ𝐴𝐴
𝑒𝑒𝐴𝐴ℤ 2 ⊕ ℤ/ℓ𝐵𝐵

𝑒𝑒𝐵𝐵ℤ 2

shared key:

security: based on the intractability of computing from 𝐸𝐸,𝐸𝐸𝐴𝐴,𝜙𝜙𝐴𝐴(𝑃𝑃𝐵𝐵),𝜙𝜙𝐴𝐴(𝑄𝑄𝐵𝐵)

𝜙𝜙𝐴𝐴:𝐸𝐸 → 𝐸𝐸𝐴𝐴 ≔ ⁄𝐸𝐸 𝑅𝑅𝐴𝐴
𝜙𝜙𝐴𝐴 𝑃𝑃𝐵𝐵 ,𝜙𝜙𝐴𝐴 𝑄𝑄𝐵𝐵 ∈ 𝐸𝐸𝐴𝐴

𝜙𝜙𝐵𝐵:𝐸𝐸 → 𝐸𝐸𝐵𝐵 ≔ ⁄𝐸𝐸 𝑅𝑅𝐵𝐵 ,
𝜙𝜙𝐵𝐵 𝑃𝑃𝐴𝐴 ,𝜙𝜙𝐵𝐵 𝑄𝑄𝐴𝐴 ∈ 𝐸𝐸𝐵𝐵𝐸𝐸𝐴𝐴 ,𝜙𝜙𝐴𝐴 𝑃𝑃𝐵𝐵 ,

𝜙𝜙𝐴𝐴 𝑄𝑄𝐵𝐵
𝐸𝐸𝐵𝐵 ,𝜙𝜙𝐵𝐵 𝑃𝑃𝐴𝐴 ,
𝜙𝜙𝐵𝐵 𝑄𝑄𝐴𝐴

𝜙𝜙𝐵𝐵 𝑅𝑅𝐴𝐴 = 𝜙𝜙𝐵𝐵 𝑃𝑃𝐴𝐴 + 𝑘𝑘𝐴𝐴𝜙𝜙𝐵𝐵 𝑄𝑄𝐴𝐴

𝐾𝐾Alice ≔ 𝑗𝑗 ⁄𝐸𝐸𝐵𝐵 𝜙𝜙𝐵𝐵(𝑅𝑅𝐴𝐴)

𝜙𝜙𝐴𝐴 𝑅𝑅𝐵𝐵 = 𝜙𝜙𝐴𝐴 𝑃𝑃𝐵𝐵 + 𝑘𝑘𝐵𝐵𝜙𝜙𝐴𝐴 𝑄𝑄𝐵𝐵

𝐾𝐾Bob ≔ 𝑗𝑗 ⁄𝐸𝐸𝐴𝐴 𝜙𝜙𝐴𝐴(𝑅𝑅𝐵𝐵)

𝑘𝑘𝐴𝐴 ← ⁄ℤ ℓ𝐴𝐴
𝑒𝑒𝐴𝐴ℤ ,

𝑅𝑅𝐴𝐴 ≔ 𝑃𝑃𝐴𝐴 + 𝑘𝑘𝐴𝐴𝑄𝑄𝐴𝐴,
𝑘𝑘𝐵𝐵 ← ⁄ℤ ℓ𝐵𝐵

𝑒𝑒𝐵𝐵ℤ ,
𝑅𝑅𝐵𝐵 ≔ 𝑃𝑃𝐵𝐵 + 𝑘𝑘𝐵𝐵𝑄𝑄𝐵𝐵,

𝐾𝐾Alice = 𝑗𝑗 ⁄𝐸𝐸𝐵𝐵 𝜙𝜙𝐵𝐵 𝑅𝑅𝐴𝐴 = 𝑗𝑗 ⁄𝐸𝐸 𝑅𝑅𝐴𝐴,𝑅𝑅𝐵𝐵 = 𝑗𝑗 ⁄𝐸𝐸𝐴𝐴 𝜙𝜙𝐴𝐴 𝑅𝑅𝐵𝐵 = 𝐾𝐾Bob
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Crypto-Friendly Notation for SIDH

• 𝒶𝒶 ≔ 𝑘𝑘A 𝒷𝒷 = 𝑘𝑘B,

• ℊ ≔ ( 𝐸𝐸;𝑃𝑃A,𝑄𝑄A,𝑃𝑃B,𝑄𝑄B),              𝑒𝑒 ≔ ℓA, ℓB, 𝑒𝑒A, 𝑒𝑒B ,

• ℊ𝒶𝒶 ≔ 𝐸𝐸A;𝜙𝜙A 𝑃𝑃B ,𝜙𝜙A 𝑄𝑄B ,     ℊ𝒷𝒷 ≔ 𝐸𝐸B;𝜙𝜙B 𝑃𝑃A ,𝜙𝜙B 𝑄𝑄A ,

• ℊ𝒷𝒷 𝒶𝒶 ≔ 𝑗𝑗( ⁄𝐸𝐸B 𝜙𝜙B(𝑅𝑅A) ), ℊ𝒶𝒶 𝒷𝒷 ≔ 𝑗𝑗( ⁄𝐸𝐸A 𝜙𝜙A(𝑅𝑅B) ).      

alternative description for simple presentations of 
our proposals 

Original

𝐸𝐸
𝐸𝐸A ≔
⁄𝐸𝐸 𝑅𝑅𝐴𝐴

𝐸𝐸B ≔
⁄𝐸𝐸 𝑅𝑅𝐵𝐵

⁄𝐸𝐸 𝑅𝑅𝐴𝐴,𝑅𝑅𝐵𝐵

𝜙𝜙𝐴𝐴

𝜙𝜙𝐵𝐵

𝜙𝜙𝐵𝐵𝐴𝐴

𝜙𝜙𝐴𝐴𝐵𝐵

Crypto-friendly
ℊ ℊ𝒶𝒶

ℊ𝒷𝒷 ℊ𝒷𝒷 𝒶𝒶

= ℊ𝒶𝒶 𝒷𝒷
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Proposed Biclique SIDH AKE Protocol

use only
static keys
𝒶𝒶1,𝐵𝐵2

use only
static keys
𝒷𝒷2,𝐴𝐴1

calculate 𝐴𝐴1 ≔ ℊ𝒶𝒶1 ,𝐴𝐴2 ≔ ℊ𝒶𝒶2

Alice

static key of Alice

𝒶𝒶1 ←
U
𝑆𝑆𝐾𝐾1, 𝒶𝒶2 ←

U
𝑆𝑆𝐾𝐾2,

calculate 𝐵𝐵1 ≔ ℊ𝒷𝒷1 ,𝐵𝐵2 ≔ ℊ𝒷𝒷2

static key of Bob

𝒷𝒷1 ←
U
𝑆𝑆𝐾𝐾1, 𝒷𝒷2←

U
𝑆𝑆𝐾𝐾2,Bob

𝓍𝓍←
U
𝑆𝑆𝐾𝐾1,

initiator responder

calculate 𝑋𝑋 ≔ ℊ𝑥𝑥 𝓎𝓎←
U
𝑆𝑆𝐾𝐾2, calculate 𝑌𝑌 ≔ ℊ𝓎𝓎

ephemeral key of Bobephemeral key of Alice
𝑋𝑋𝑌𝑌

𝑍𝑍1 ≔ 𝑌𝑌𝒶𝒶1 ,𝑍𝑍2 ≔ 𝐵𝐵2𝓍𝓍 ,
𝑍𝑍3 ≔ 𝐵𝐵2𝒶𝒶1 ,𝑍𝑍4 ≔ 𝑌𝑌𝓍𝓍 ,

𝑍𝑍1 ≔ 𝐴𝐴1𝓎𝓎 ,𝑍𝑍2 ≔ 𝑋𝑋𝒷𝒷2 ,

𝑍𝑍3 ≔ 𝐴𝐴1𝒷𝒷2 ,𝑍𝑍4 ≔ 𝑋𝑋𝓎𝓎 ,

𝐾𝐾Alice ≔ 𝐾𝐾Bob ≔ 𝐻𝐻( Π,𝑍𝑍1,𝑍𝑍2,𝑍𝑍3,𝑍𝑍4, Alice, Bob,𝑋𝑋,𝑌𝑌 )

𝑆𝑆𝐾𝐾1 ≔ ⁄ℤ ℓ1
𝑒𝑒1 ℤ , 𝑆𝑆𝐾𝐾2 ≔ ⁄ℤ ℓ2

𝑒𝑒2 ℤ ,
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Two Types of SI-Gap-DH Problem (I)

Let 𝒮𝒮 be a quantum machine adversary．

For pksidh = (ℊ ≔ 𝐸𝐸;𝑃𝑃A,𝑄𝑄A,𝑃𝑃B,𝑄𝑄B , ℯ ≔ ℓA, ℓB, 𝑒𝑒A, 𝑒𝑒B )←
R

Gensidh(1𝜆𝜆)
and 𝒶𝒶←

U
𝑆𝑆𝐾𝐾A,𝒷𝒷←

U
𝑆𝑆𝐾𝐾B, 𝒮𝒮 receives ( pksidh,ℊ𝒶𝒶,ℊ𝒷𝒷 ), and 𝒮𝒮 accesses the

SI-DDH oracle for any input 𝒳𝒳 = ( pksidh, 𝐸𝐸A′ ;𝑃𝑃AB′ ,𝑄𝑄AB′ , 𝐸𝐸B′ ;𝑃𝑃BA′ ,𝑄𝑄BA′ ,
𝒽𝒽′ ) where 𝑃𝑃AB′ ,𝑄𝑄AB′ (resp. 𝑃𝑃BA′ ,𝑄𝑄BA′ ) are points in 𝐸𝐸A′ (𝔽𝔽𝑝𝑝2) (resp. 𝐸𝐸B′ (𝔽𝔽𝑝𝑝2))
and 𝒽𝒽𝐸 ∈ 𝔽𝔽𝑝𝑝2, and then outputs 𝒽𝒽 ∈ 𝔽𝔽𝑝𝑝2. If 𝒽𝒽 = ℊ𝒶𝒶 𝒷𝒷 = ℊ𝒷𝒷 𝒶𝒶 , 𝒮𝒮 wins.

According to the behavior of SI-DDH oracle, we have the following two 
types of SI-GDH problems, i.e.,

 degree-sensitive SI-GDH (ds-GDH) problem and
 degree-insensitive SI-GDH (di-GDH) problem.

ds-, di-SI-GDH problems
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Two Types of SI-Gap-DH Problem (II)

 degree-sensitive SI-GDH (ds-GDH) problem：
The ds-DDH oracle answers true if 
there exists a supersingular EC 𝐸𝐸AB′ and a commutative diagram below s.t.

• degree 𝑑𝑑A′ of 𝜙𝜙A′ (and 𝜙𝜙BA′ ) satisfies 𝑑𝑑A′ = ℓA
𝑒𝑒A and

degree 𝑑𝑑B′ of 𝜙𝜙B′ (and 𝜙𝜙AB′ ) satisfies 𝑑𝑑B′ = ℓB
𝑒𝑒B

• 𝑃𝑃AB′ = 𝜙𝜙A′ 𝑃𝑃B ,𝑄𝑄AB′ = 𝜙𝜙A′ 𝑄𝑄B ,𝑃𝑃BA′ = 𝜙𝜙B′ 𝑃𝑃A ,𝑄𝑄BA′ = 𝜙𝜙B′ 𝑄𝑄A and 𝒽𝒽′ = 𝑗𝑗(𝐸𝐸AB′ ).

 degree-insensitive SI-GDH (di-GDH) problem：
The di-DDH oracle answers true if 
there exists a supersingular EC 𝐸𝐸AB′ and a commutative diagram below s.t.

• degree 𝑑𝑑A′ of 𝜙𝜙A′ (and 𝜙𝜙BA′ ) is a power of ℓA and
degree 𝑑𝑑B′ of 𝜙𝜙B′ (and 𝜙𝜙AB′ ) is a power of ℓB

• 𝑃𝑃AB′ = 𝜙𝜙A′ 𝑃𝑃B ,𝑄𝑄AB′ = 𝜙𝜙A′ 𝑄𝑄B ,𝑃𝑃BA′ = 𝜙𝜙B′ 𝑃𝑃A ,𝑄𝑄BA′ = 𝜙𝜙B′ 𝑄𝑄A and 𝒽𝒽′ = 𝑗𝑗(𝐸𝐸AB′ ).

𝐸𝐸 𝐸𝐸A′
𝜙𝜙A′

𝐸𝐸B′ 𝐸𝐸AB′

𝜙𝜙B′

𝜙𝜙BA′

𝜙𝜙AB′
𝑑𝑑A′ = deg 𝜙𝜙A′ = deg 𝜙𝜙BA′

𝑑𝑑B′ = deg 𝜙𝜙B′ = deg 𝜙𝜙AB′

We have two types of SI-GDH problems according to the SI-DDH oracle.
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Galbraith-Vercauteren (GV) Attack
Attack for SIDH isogeny problem using the decision degree (DD) oracle
for SIDH isogenies.

 Solver 𝒮𝒮 obtains the following SIDH isogeny problem instance

( pksidh = (ℊ ≔ 𝐸𝐸;𝑃𝑃A,𝑄𝑄A,𝑃𝑃B,𝑄𝑄B , ℯ ≔ ℓA, ℓB, 𝑒𝑒A, 𝑒𝑒B ),
𝐸𝐸A,𝑃𝑃AB ≔ 𝜙𝜙A(𝑃𝑃B),𝑄𝑄AB ≔ 𝜙𝜙A(𝑄𝑄B))

where 𝜙𝜙𝐴𝐴:𝐸𝐸 → 𝐸𝐸𝐴𝐴 is an ℓA
𝑒𝑒A-isogeny, and the goal of 𝒮𝒮 is to reveal 𝜙𝜙A．

 𝒮𝒮 calculates 𝑢𝑢 ∈ ℤ such that  𝑢𝑢 ⋅ ℓA ≡ 1 (mod ℓB)
and then ℓA-isogeny 𝜓𝜓:𝐸𝐸A → 𝐸𝐸𝐸. 𝒮𝒮 sends

( �pksidh = (ℊ, �̃�𝑒 ≔ ℓA, ℓB, 𝑒𝑒A − 1, 𝑒𝑒B ,
𝐸𝐸′,𝑢𝑢 ⋅ 𝜓𝜓(𝑃𝑃AB),𝑢𝑢 ⋅ 𝜓𝜓(𝑄𝑄AB))

to the DD oracle. The oracle distinguishes whether 𝐸𝐸𝐸 is ℓA
𝑒𝑒A−1-

isogenous to 𝐸𝐸 or ℓA
𝑒𝑒A+1- isogenous to 𝐸𝐸, i.e., whether 𝜓𝜓 is a 

backtracking step on the path given by 𝜙𝜙𝐴𝐴. By repeating this, 𝒮𝒮
reveals 𝜙𝜙A.

𝐸𝐸 𝐸𝐸A
𝜙𝜙A 𝜓𝜓

?

𝐸𝐸𝐸
𝐸𝐸𝐸
𝐸𝐸𝐸
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Solving ds-SI-GDH Problem by GV-type Attack
Attack for ds-SI-GDH problem using ds-SI-DDH oracle.

 Solver 𝒮𝒮 obtains the following ds-SI-GDH problem instance.

( pksidh = (ℊ ≔ 𝐸𝐸;𝑃𝑃A,𝑄𝑄A,𝑃𝑃B,𝑄𝑄B , ℯ ≔ ℓA, ℓB, 𝑒𝑒A, 𝑒𝑒B ),
𝐸𝐸A,𝑃𝑃AB ≔ 𝜙𝜙A(𝑃𝑃B),𝑄𝑄AB ≔ 𝜙𝜙A(𝑄𝑄B), … )

 𝒮𝒮 calculates 𝑢𝑢 ∈ ℤ s.t. 𝑢𝑢 ⋅ ℓA ≡ 1 (mod ℓB)
and then ℓA-isogeny 𝜓𝜓:𝐸𝐸A → 𝐸𝐸𝐸, and
ℓB
𝑒𝑒B-isogenies 𝐸𝐸 → 𝐸𝐸B′ , 𝐸𝐸𝐸 → 𝐸𝐸AB′ s.t. the right

diagram is commutative. 𝒮𝒮 sends
( �pksidh = (ℊ, �̃�𝑒 ≔ ℓA, ℓB, 𝑒𝑒A − 1, 𝑒𝑒B ,

𝐸𝐸′,𝐸𝐸B′ , … , 𝑗𝑗(𝐸𝐸AB′ ))

𝐸𝐸 𝐸𝐸A
𝜙𝜙A 𝜓𝜓

?

𝐸𝐸𝐸
𝐸𝐸𝐸
𝐸𝐸𝐸

𝐸𝐸B′ 𝐸𝐸AB′

where 𝜙𝜙𝐴𝐴:𝐸𝐸 → 𝐸𝐸𝐴𝐴 is an ℓA
𝑒𝑒A-isogeny, and the goal of 𝒮𝒮 is to reveal 𝜙𝜙A．

to the ds-SI-DDH oracle. The oracle distinguishes whether 𝜓𝜓 is a 
backtracking step on the path given by 𝜙𝜙𝐴𝐴. By repeating this, 𝒮𝒮
reveals 𝜙𝜙A.
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Security of Biclique SIDH AKE 
from di-SI-GDH Assumption

 To distinguish the degree of isogeny (or distance between two elliptic 
curves in the ℓA-isogeny graph) is crucial for the GV-type attack.

 The GV-type attack adversaries have no advantages in the di-SI-GDH 
problem, where the decision oracle cannot distinguish the degree of
isogeny.

 Therefore, (in contrast to the ds-SI-GDH problem,) we may assume that
the di-SI-GDH problem cannot be solved by any efficient adversaries, 
and can be used for the basis of the security of our biclique scheme.

The biclique SIDH protocol is a post-quantum CK+-secure authenticated
key exchange protocol under the di-SI-GDH assumption in the random 
oracle model. 

Theorem
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Conclusions

We instantiate the proposed protocols on HHS with 
limitation where the number of the user group is two.
In particular, the protocols instantiated by CSIDH are 
currently more realistic than the general 𝑛𝑛-party 
CIM-based ones.

We proposed two one-round AGKE protocols from 
Cryptographic Invariant Maps (CIMs).

We also proposed two one-round AKE protocols from 
SIDH, which is more efficient. 
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Thank you for your attention
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